Physiology Study Guide

Physiology Unit 1:

Important:

- Body fluid compartments (particularly volumes and how they are measured).
- Diffusion and Fick’s Law.
- Osmolality.
- Gibbs-Donnan effect.
- Membrane potentials.

Definitions:

- Transcellular fluid.
- Moles vs. Osmoles.
- pH.
- Buffer.
- Diffusion.
- Osmosis.
- Osmotic pressure
- Osmolarity vs. Osmolality.
- Tonicity.
- Oncotic pressure.

Physiology Unit 2:

- Transport across cell membranes
- Na^+ / K^+ ATP-ase.
- Know fundamentals of Intercellular Communication and 2^{nd} messengers (some overlap with Pharmacology).

Physiology Unit 3:

- Axonal transport
- Resting membrane potential. (Fig 4-6)
• Ion fluxes during action potential.

• Changes in excitability

• Saltatory conduction.

• Nerve fibre types and function. (Table 4-1 = MCQ, NNB!!!)

• Table 4-3 = MCQ

Physiology Unit 4:

• Morphology of skeletal muscle. (Fig 5-3)
• Molecular basis of contraction (Fig 5-5, Fig 5-6)
• Types of contraction
• Tetany
• Length-tension (Fig 5-11)

• Morphology of cardiac muscle (contrast with skeletal).
• Cardiac muscle action potential. (Fig 5-16)
• Contractile response
• Length-tension relationship for cardiac muscle.

• Smooth muscle morphology
• Contraction (Fig 5-21)

Physiology Unit 5:

• EPSP
• IPSP
• Generation of the action potential in the postsynaptic neuron
• Inhibition & Facilitation
• Neuro-muscular transmission

• Ach. & receptors
• Adr. / NorAdr. & receptors
• Serotonin (Important because of SSRIs etc.)
• GABA
Physiology Unit 6:
Revision Week

Physiology Unit 7:

- Route of spread of cardiac excitation.
- Pacemaker potentials

 How are they generated?
 - Fig. 30-1.
 - Fig. 30-2.
 - Fig. 30-3.

- Table 30-1 could generate an MCQ
- Read ECG once (you know this anyway).
- Arrhythmias.
- Most of the ECG / arrhythmia content is likely to be seen in MCQs only.

Physiology Unit 8:

- The cardiac cycle - Phases.
 - Fig. 31-3.
- JVP waves (a,c,v) - what causes them.
- Heart sounds (including S3, S4) - what causes them.
- Cardiac output - How to measure it.
 - Fick principle (**different from Fick’s law).
 - Factors controlling cardiac output (Fig. 31.5)
 - Preload / afterload / contractility
 - Length-Tension relationship in cardiac muscle.
 (i.e. Frank-Starling law).
 - Factors affecting EDV (preload).
 - Pressure-volume loop for left ventricle (Fig. 31.7).
 - Factors affecting contractility (Fig. 31.8).
Physiology Unit 9:

- Platelets.
- Red cells
- Haemoglobin.
- Blood types (especially ABO, Rhesus).
- Plasma proteins & their functions
- Haemostasis.
- Anticlotting mechanisms.

Physiology Unit 10:

- Table 32-10 (MCQ)
- Flow = Pressure
 Resistance
- Laminar flow / turbulent flow.
- Reynold's number
- Poiseuille’s Law -know formula (popular question).
 -explain physiological significance.
 (e.g. “what is the effect on resistance of a 50% reduction in the
 diameter of a blood vessel?”)
- Laplace’s Law $P = \frac{2T}{R}$ (also a popular question).
- Resistance vs capacitance vessels.
- Fig. 32-27 is a collection of MCQs waiting to happen.
- Measurement of BP - what the different Korotkov sounds mean.
- Capillary circulation -Starling forces & their values.
 -Fig. 32-33.

Physiology Unit 11:

- Neural regulation: -innervation of blood vessels.
 -innervation of the heart.
 -the vasomotor centre.
 -Tables 31-2 & 31-3
- Baroreceptors. -site / action
 -other sites of receptors
- atrial / LV / pulmonary.

- Reflexes mentioned in the text: - Bainbridge.
 - Bezold-Jarisch.
 - Cushing.
 - Valsalva manoeuvre.

- Autoregulation: - definition.
 - theories of how it works.

- Prostacyclin / Thromboxane A₂.

- EDRF (NO): - factors which release it.
 - actions.

- Endothelins: - actions.
 - Table 31-1 for an MCQ.

- Hormones: - Kinins / ANP / ADH / NA / Angiotensin II.

Physiology Unit 12:

- Table 34-2 is a potential MCQ

- Cerebral circulation:
 * CSF
 - Volume.
 - Where produced, where absorbed.
 - Composition
 - Function.
 - Fig. 34-3.
 * Blood-brain barrier.
 - Penetration of substances into brain.
 - Function.
 * Circumventricular organs.
 * Regulation of cerebral blood flow (Important):
 - Monroe-Kellie doctrine.
 - Fig. 34-8.
 - Autoregulation (Fig. 34-9.)
 * Brain metabolism and O₂ requirements.

- Coronary circulation.

- Skin circulation:
 * Triple response.

- Placental and foetal circulation:
 * Changes at birth.
Physiology Unit 13:
Revision Week

Physiology Unit 14

- Ideal gas equation. / Properties of gases.
- Lung volumes & Fig. 35-7. (Important ++).
- Compliance.
- Pressure-volume curves. Fig 35-11
- Surfactant.
- Work of breathing (basic). Fig 35-15
- Regional differences in ventilation and blood flow.
- Dead space: -Anatomical.
 -Physiological.

Physiology Unit 15:

- Gas exchange.
- Bohr’s equation (best shown in West).

- Diffusion in the lungs.
- Review Fick’s law.
- Perfusion-limited & diffusion-limited gas uptake. (and examples). Fig. 35-19.

- Pulmonary circulation
- Read West chapter 4 for blood flow and metabolism

- Other functions of the respiratory system:
 - defence.
 - metabolic / endocrine functions.

Physiology Unit 16:

- Reaction between Hb and O₂.
- O₂ - Hb dissociation curve: (This is important). Fig 36-2
 * Be able to draw it and **plot in some values**
 * Effect of H⁺, CO₂, 2,3-DPG, ↑ temp. Fig 36-3
- Be able to draw dissociation curves for Myoglobin and foetal Hb.
 (superimposed on the Hb-O₂ curve). Fig 36-5
• CO₂ transport. Fig 36-7

• Buffers: Definition / main buffers in vivo.
• Acidosis and alkalosis. Fig 36-10

• Hypoxia (NB) - 4 types (and examples)
• Hypoxic hypoxia - diseases causing it.
• Effects of ↑ barometric pressure

• V/Q mismatch – read West Chapter 5 for this topic.

Physiology Unit 17:

• The control of ventilation. (a very popular question)
 ** Fig. 8.1 in West for the arrangement of respiratory control.**

• Centres for respiratory drive

• Different stimuli affecting respiratory drive (Table 37-1)

• Cheyne-Stokes breathing and why it occurs.

• Aortic and carotid bodies.

• Blood supply and O₂ uptake of the carotid body.

Physiology Unit 18:

Revision Week

Physiology Unit 19:

• Renal blood flow:
 * Know value.
 * Renal plasma flow and how measured.
 * Regulation of renal blood flow (including autoregulation).

• GFR:
 * Know value.
 * How measured.
 * Control of GFR.

• Tubular function.
• Na⁺ handling.
• Glucose handling:
 * Concept of renal threshold (NB 200 mg/dl ≈ mmol/l.)
• PAH handling.
• Tubuloglomerular feedback / Glomerulotubular balance.

Physiology Unit 20:

• Regulation of Na⁺ and Cl⁻ excretion.
• Water excretion and things affecting it.
• Regulation of K⁺ secretion.
• Emptying of the bladder.
• Renal H⁺ excretion
• pH balance

Physiology Unit 21:

• Defence of tonicity.
• Vasopressin
• Defence of volume.
• Renin-angiotensin System
• Erythropoietin

Physiology Unit 22:

• Gastrointestinal secretions:
 * Salivary secretion
 * Origin and regulation
 * Contents of gastric juice (Table 26-1 = MCQ)
• Exocrine pancreas:
 * Principal digestive enzymes
 * Regulation
• Composition of bile (Table 26-4 = MCQ)
• Regulation of gastric acid secretion.
 * Gastrin
 * Cholecystokinin
 * Secretin
 * Somatostatin

Physiology Unit 23:

• Carbohydrates:
 * Digestion
 * Absorption
• Protein:
 * Digestion
 * Absorption
• Lipids:
 * Digestion
 * Absorption

• Definition of metabolic rate.
• Respiratory quotient (MCQ):
 * Definition.
 * Factors affecting.
• Factors affecting metabolic rate.

Physiology Unit 24:

Revision Week

Physiology Unit 25:

• Overview of iodine metabolism.

• T3 / T4 synthesis / secretion.

• Protein binding (Table 20-1 = MCQ).

• Effects of T3 / T4. (Table 20-5 = MCQ)

• Regulation of T3 / T4 secretion.
• Overview of hypothyroidism / hyperthyroidism.

• Causes of hyperthyroidism (Table 20-4 = MCQ)

Physiology Unit 26:

• Cell types in Islets of Langerhans (and which cells secrete what).

• Insulin (Important):
 * Structure.
 * Synthesis / secretion.
 * Effects. (Table 21-4)
 * Mechanism of action

• Insulin deficiency and excess

• Regulation of insulin secretion (Table 21-6 = MCQ)

• Glucagon:
 * Actions.
 * Regulation of secretion.

• Somatostatin

• Pancreatic polypeptide.

• Carbohydrate metabolism

Physiology Unit 27:

• Adrenal morphology / architecture (Fig 22-2 = MCQ)

• Adrenal medulla:
 * Effects of catecholamines (Fig 22-5 = MCQ)
 * Regulation of medullary secretion.

• Adrenal cortex:
 * Substances secreted. (Table 22-2 = MCQ)

• Glucocorticoids:
 * Physiological effects
 * Pathological effects
 * Regulation

• ACTH.

• Aldosterone:
 * Effects
 * Regulation (Table 22-6)
Physiology Unit 28:

- Overview of Ca^{2+} metabolism (Fig. 23-1).
- Table 23-1 (distribution of calcium in plasma).
- Vitamin D and OH-Cholecalciferols.
- PTH.
 * Actions.
 * Regulation of secretion.
- Figure 23-3
- Calcitonin.
 * Actions.
- Bone physiology

Physiology Unit 29:

- Hypothalamic function (Table 18-1)
- Thirst
- Posterior pituitary hormones
- Anterior pituitary hormones
- Temperature regulation
- Overview of growth hormone.
- Physiology of growth
- Atrial natriuretic polypeptide:
 * Actions. / Factors affecting secretion.

Physiology Unit 30:

Revision Week
Physiology Unit 31:

- Chapter 9 (Reflexes):
 * Bell-Magendie law (MCQ).
 * Monosynaptic reflexes (stretch receptor).
 * Inverse stretch reflex
 * Polysynaptic reflexes (withdrawal reflex).

- Chapter 10 (Pain & Temperature):
 * Nociceptors
 * Classification of pain

- Chapter 11 (Somatosensory Pathways)
 * Dorsal column pathways and an overview of their position in the spinal cord. (Fig 11-2)
 * Ventrolateral spinothalamic tract

Physiology Unit 32:

- Chapter 12 (Vision):
 * Neural pathways (Fig 12-4)
 * Accommodation
 * Pupillary reflexes
 * Effect of lesions in the optic pathways

- Chapter 13 (Hearing and Equilibrium)
 * Table 13-1 (tuning fork tests)
 * Vestibular system
 * Rotational acceleration
 * Nystagmus

- Chapter 16 (Control of Posture and Movement)
 * Corticospinal and corticobulbar tracts
 * Figure 16-2
 * Spinal shock